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Overview

The nature of the boundary of R introduces issues not found in integrals
over an interval. When R has a curved boundary, the n rectangles of a
partition lie inside R but do not cover all of R. In order for partition to
approximate R well, the parts of R covered by small rectangles lying partly
outside R must become negligible as the norm of the partition approaches
zero. This property of being nearly filled in by a partition of small norm is
satisfied by all the regions that we will encounter.

There is no problem with boundaries made from polygons, circles, ellipse,
and from continuous graphs over an interval, joined end to end. A curve
with a ”fractal” type of shape would be problematic, but such curves arise
rarely in most applications. A careful discussions of which type of regions
R can be used for computing double integrals is left to a more advanced
text.
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Double Integrals over Bounded Nonrectangular Regions

To define the double integral of a function f (x , y) over a bounded,
nonrectangular region R, we begin by covering R with a grid of small
rectangular cells whose union contains all points of R.

This time, however, we cannot exactly fill R with a finite number of
rectangles in the grid lie partly outside R. A partition of R is formed by
taking the rectangles that lie completely inside it, not using any that are
either partly or completely outside.
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Double Integrals over Bounded Nonrectangular Regions

For commonly arising regions, more and more of R is included as the norm
of a partition (the largest width or height of any rectangle used)
approaches zero. Once we have a partition of R, we number the rectangles
in some order from 1 to n and let ∆Ak be the area of the kth rectangle.
We then choose a point (xk , yk) in the kth rectangle and form the
Riemann sum

Sn =
n∑

k=1

f (ck , yk)∆Ak .
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Double Integrals over Bounded Nonrectangular Regions

As the norm of the partition forming Sn goes to zero, ‖P‖ → 0, the width
and height of each enclosed rectangle goes to zero and their number goes
to infinity.

If f (x , y) is a continuous function, then these Riemann sums converge to a
limiting value, not dependent on any of the choices we made. This limit is
callld the double integral of f (x , y) over R :

lim
‖P‖→0

n∑
k=1

f (xk , yk)∆Ak =

∫∫
R

f (x , y) dA.
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Double Integrals over Bounded Nonrectangular Regions

If f (x , y) is positive and continuous over R we define the volume of the
solid generated between R and the surface z = f (x , y) to be∫∫

R

f (x , y) dA.
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Double Integrals over Bounded Nonrectangular Regions

If R is a region like the one shown in the xy -plane in the following figure,
bounded “above” and “below” by the curves y = g2(x) and y = g1(x) and
on the sides by the lines x = a, x = b, we may again calculate the volume
by the method of slicing.
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Double Integrals over Bounded Nonrectangular Regions

We first calculate the cross-sectional area

A(x) =

∫ y=g2(x)

y=g1(x)
f (x , y) dy

and then integrate A(x) from x = a to x = b to get the volume as an
iterated integral:

V =

∫ b

a
A(x) dx =

∫ b

a

∫ y=g2(x)

y=g1(x)
f (x , y) dy dx .
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Double Integrals over Bounded Nonrectangular Regions

Similarly, if R is a region like the one shown in the following figure,
bounded by the curves x = h2(y) and x = h1(y) and the lines
y = c , y = d , the the volume calculated by slicing is given by the iterated
integral.

Volume =

∫ d

c

∫ x=h2(y)

x=h1(y)
f (x , y) dx dy .
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Fubini’s Theorem (Stronger Form)

That the iterated integrals both give the volume that we defined to be the double integral of f
over R is a consequence of the following stronger form of Fubini’s Theorem.

Theorem 1.
Let f (x , y) be continuous on a region R.

If R is defined by a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x), with g1 and g2 continuous on [a, b], then

∫∫
R

f (x , y) dA =

∫ b

a

∫ g2(x)

g1(x)
f (x , y) dy dx .

If R is defined by c ≤ y ≤ d , h1(y) ≤ x ≤ h2(y), with h1 and h2 continuous on [c, d ],
then ∫∫

R

f (x , y) dA =

∫ d

c

∫ h2(y)

h1(y)
f (x , y) dx dy .
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Example 1.

Find the volume of the prism whose base is the triangle in the xy -plane
bounded by the x-axis and the lines y = x and x = 1 and whose top lies in
the plane

z = f (x , y) = 3− x − y .
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Solution

V =

∫ 1

0

∫ x

0
(3− x − y) dy dx =

∫ 1

0

∫ 1

y
(3− x − y) dxdy .
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Fubini’s Theorem (Stronger Form)

Although Fubini’s Theorem assures us that a double integral may be
calculated as an iterated integral in either order of integration, the value of
one integral may be easier to find than the value of the other.

Example 2.

Calculate ∫∫
R

sin x

x
dA

where A is the triangle in the xy -plane bounded by the x-axis, the line
y = x , and the line x = 1.

If we integrate first with respect to y and then with respect to x , we get
− cos(1) + 1 as the answer.∫ 1

0

(∫ x

0

sin x

x
dy
)
dx = − cos 1 + 1 ≈ 0.46.
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Fubini’s Theorem (Stronger Form)

But if we reverse the order of integration and attempt to calulate, we run
into a problem because ∫

sin x

x
dx

cannot be expressed in terms of elementary functions (there is no simple
antiderivative).

There is no general rule for predicting which order of integration will be
good. If the order we first choose doesn’t work, we try the other.
Sometimes neither order will work, and then we need to use numerical
approximations.
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Finding Limits of Integration

We now give a procedure for finding limits of integration that applies for
many regions in the plane. Regions that are more complicated, and for
which this procedure fails, can often be split up into pieces on which the
procedure works.

Using Vertical Cross-sections

When faced with evaluation ∫∫
R

f (x , y) dA,

integrating first with respect to y and then with respect to x , do the
following.
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Finding Limits of Integration

1. Sketch : Sketch the region of integration and label the bounding
curves.

2. y limits : Imagine a vertical line L cutting through R in the direction
of increasing y . Mark the y -values where L enters and leaves. These
are the y -limits of integration and are usually functions of x (instead
of constants).

3. x limits : Choose x-limits that include all the vertical lines through R.

P. Sam Johnson Double Integrals over General Regions 16/93



Finding Limits of Integration

Using Horizontal Cross-sections

To evaluate the same double integral as an iterated integral with the order
of integration reversed, use horizontal lines instead of vertical lines in steps
2 and 3.

Double integrals of continuous functions over nonrectangular regions have
the same algebraic properties as integrals over rectangular regions. These
properties are useful in computations and applications.
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Example 3.

Write an equivalent integral for the integral∫ 2

0

∫ 2x

x2

(4x + 2) dy dx

and write an equivalent integral with the order of integration reversed.
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Solution

An equivalent integral with the order of integration reversed is∫ 4

0

∫ √y
y/2

(4x + 2) dx dy = 8
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Properties of Double Integrals

If f (x , y) and g(x , y) are continuous, then

Constant Multiple :∫∫
R

cf (x , y) dA = c

∫∫
R

f (x , y) dA, any number c .

Sum and Difference :∫∫
R

{
f (x , y)± g(x , y)

}
dA =

∫∫
R

f (x , y) dA±
∫∫
R

g(x , y) dA.
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Properties of Double Integrals

If f (x , y) and g(x , y) are continuous, then

Domination :∫∫
R

f (x , y) dA ≥ 0 if f (x , y) ≥ 0 on A.∫∫
R

f (x , y) dA ≥
∫∫
R

g(x , y) dA if f (x , y) ≥ g(x , y) on R.
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Properties of Double Integrals

Additivity :

∫∫
R

f (x , y) dA =

∫∫
R1

f (x , y) dA +

∫∫
R2

f (x , y) dA

if R is the union of two nonoverlapping regions R1 and R2.
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Properties of Double Integrals

The idea behind these properties is that integrals behave like sums. If the
function f (x , y) is replaced by its constant multiple cf (x , y), then a
Riemann sum for f

Sn =
n∑

k=1

f (xk , yk)∆Ak

is replaced by a Riemann sum for cf

n∑
k=1

cf (xk , yk)∆Ak = c
n∑

k=1

f (xk , yk)∆Ak = cSn.
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Properties of Double Integrals

Taking limits as n→∞ shows that

c lim
n→∞

Sn = c

∫∫
R

f dA

and

lim
n→∞

cSn =

∫∫
R

cf dA

are equal. It follows that the constant multiple property carries over from
sums to double integrals.

The other properties are also easy to verify for Riemann sums, and carry
over to double integrals for the same reason.
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Example 4.

Find the volume of the wedgelike solid that lies beneath the surface

z = 16− x2 − y2

and above the region R bounded by the curve y = 2
√
x , the line

y = 4x − 2, and the x-axis.
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Solution

The volume is

V =

∫ 2

0

∫ (y+2)/4

y2/4
(16− x2 − y2) dx dy =

20803

1680
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Exercises

1. State Fubini’s Theorem for a continuous function on a region.

2. Write two properties of double integrals.

3. Evaluate ∫ 2

−2

∫ 5π/6

π/6

{
x3ecos2 y + sec

(x
2

)
cos y

}
dy dx .

4. Sketch the region of integration, determine the order of integration,
and evaluate the integral

(a)

∫ ∫
R

(y − 2x2) dA where R is the region inside the square

|x |+ |y | = 1.

(b)

∫ 3

0

∫ 1

√
x/3

ey
3

dy dx .
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Solutions

4. (a)

∫ ∫
R

(y − 2x2) dA =

∫ 0

−1

∫ x+1

−x−1

(y − 2x2) dy dx =∫ 1

0

∫ 1−x

x−1

(y − 2x2) dy dx = −2

3

(b)

∫ 3

0

∫ 1

√
x/3

ey
3

dy dx =

∫ 1

0

∫ 3y2

0

ey
3

dx dy = e − 1
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Exercises

5. Using double integral find the volume of the wedge cut from the first
octant by the cylinder z = 12− 3y2 and the plane x + y = 2.

6. Sketch the region of integration, write an equivalent double integral
with order of integration reversed and evaluate the integral:∫ 1

0

∫ 1

y
x2exy dx dy .

7. Evaluate the improper integral∫ ∞
1

∫ 1

e−x

1

x3y
dy dx .
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Solutions

5. V =

∫ 2

0

∫ 2−x

0
(12− 3y2) dy dx = 20

6.

∫ 1

0

∫ 1

y
x2exy dx dy =

∫ 1

0

∫ x

0
x2exy dy dx =

e − 2

2

7.

∫ ∞
1

∫ 1

e−x

1

x3y
dy dx =

∫ ∞
1

[ ln y

x3

]1

e−x
dx = − lim

b→∞

[1

x

]b
1

= 1
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Exercise

8. A symmetrical urn holds 24 buckets of water when it is full. The
interior has a circular cross-section whose radius reduces from 3 m at
the centre to 2m at the base and top. The height (between base and
top) of the urn is 12 m. The bounding surface of the urn is generated
by revolving a parabola. When 6 buckets of water is stored, what
would be the level of water (in the urn) from the bottom ?
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Solution

8.

The equation of the parabola is y = −
(
z
6

)2
+ 3. It is given that∫ z0

z=−6
π
[
3−

( z2

36

)2]
dz =

1

4

∫ 6

z=−6
π
[
3−

( z2

36

)2]
dz .

We get the relation

9z0 −
z3

0

18
+

z5
0

5× 362
= −21.60.

Hence the level of the water is z0 + 6 m, where z0 satisfies the above
relation. Note that z0 is negative and it is 3.51 m.
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Sketching Regions of Integration

Exercise 2.

In the following exercises, sketch the described regions of integration.

1. −1 ≤ x ≤ 2, x − 1 ≤ y ≤ x2

2. 0 ≤ y ≤ 1, y ≤ x ≤ 2y

3. 1 ≤ x ≤ e2, 0 ≤ y ≤ ln x

4. 0 ≤ y ≤ 1, 0 ≤ x ≤ sin−1y

5. 0 ≤ y ≤ 8, 1
4y ≤ x ≤ y

1
3
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Solution for (1.) in Exercise 2
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Solution for (2.) in Exercise 2
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Solution for (3.) in Exercise 2
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Solution for (4.) in Exercise 2
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Solution for (5.) in Exercise 2
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Finding Limits of Integration

Exercise 3.

In the following exercises, write an iterated integral for
∫∫

R dA over the
described region R using (a) vertical cross-sections, (b) horizontal
cross-sections.

1. Bounded by y =
√
x , y = 0, and x = 9

2. Bounded by y = ex , y = 1, and x = ln 3

3. Bounded by y = 3− 2x , y = x , and x = 0

4. Bounded by y = x2and y = x + 2
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Solution for (1.) in Exercise 3

(a)

∫ 9

0

∫ √3

0
dy dx

(b)

∫ 3

0

∫ 9

y2

dx dy
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Solution for (2.) in Exercise 3

(a)

∫ ln 3

0

∫ 1

e−x

dy dx

(b)

∫ 1

1/3

∫ ln 3

− ln y
dx dy
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Solution for (3.) in Exercise 3

(a)

∫ 1

0

∫ 3−2x

x
dy dx

(b)

∫ 1

0

∫ y

0
dx dy +

∫ 3

1

∫ (3−y)/2

0
dx dy
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Solution for (4.) in Exercise 3

(a)

∫ 2

−1

∫ x+2

x2

dy dx

(b)

∫ 1

0

∫ √y
−√y

dx dy +

∫ 3

1

∫ √y
y−2

dx dy
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Finding Regions of Integration and Double Integrals

Exercise 4.

In the following exercises, sketch the region of integration and evaluate the
integral.

1.

∫ π

0

∫ x

0
x sin y dy dx

2.

∫ 2

1

∫ y2

y
dx dy

3.

∫ 1

0

∫ y2

0
3y3exydx dy
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Solution for (1.) in Exercise 4

∫ π

0

∫ x

0
(x sin y)dy dx =

∫ x

0

[
− x cos y

]x
0
dx

=

∫ π

0
(x − x cos x)dx

=
[x2

2
− (cos x + x sin x)

]π
0

=
π2

2
+ 2
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Solution for (2.) in Exercise 4

∫ 2

1

∫ y2

y
dx dy =

∫ 2

1
(y2 − y)dy =

[y3

3
− y2

2

]2

1

=
(8

3
− 2
)
−
(1

3
− 1

2

)
=

7

3
− 3

2
=

5

6
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Solution for (3.) in Exercise 4

∫ 1

0

∫ y2

0
3y3exydx dy =

∫ 1

0

[
3y2exy

]y2

0
dy

=

∫ 1

0
(3y2ey

3 − 3y2)dy =
[
ey

3 − y3
]1

0
= e − 2
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Exercises

Exercise 5.

In the following exercises, integrate f over the given region.

1. Quadrilateral : f (x , y) = x/y over the region in the first quadrant
bounded by the lines y = x , y = 2x , x = 1, and x = 2

2. Triangle : f (x , y) = x2 + y2 over the triangular region with vertices
(0, 0) , (1, 0) , and (0, 1)

3. Triangle : f (u, v) = v −
√
u over the triangular region cut from the

first quadrant of the uv− plane by the line u + v = 1

4. Curved region : f (s, t) = ex ln t over the region in the first quadrant
of the st− plane that lies above the curve s = ln t from t = 1 to
t = 2.
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Solution for Exercise 5

1.
∫ 2

1

∫ 2x
x

x
y dy dx =

∫ 2
1 [x ln y ]2xx dx = (ln 2)

∫ 2
1 x dx = 3

2 ln 2

2.
∫ 1

0

∫ 1−x
0 (x2 + y2)dy dx =

∫ 1
0 [x2y + y0

3 ]1−x0 dx =∫ 1
0

[
x2(1− x) + (1−x)3

3

]
dx =

∫ 1
0

[
x2 − x3 + (1−x)3

3

]
dx =[

x3

3 −
x4

4 −
(1−x)4

12

]1
0

=
(

1
3 −

1
4 − 0

)
−
(
0− 0− 1

12

)
= 1

6

3.
∫ 1

0

∫ 1−u
0 (v −

√
u)dv du =

∫ 1
0

[
v2

2 − v
√
u
]1−u

0
du =∫ 1

0

[
1−2u+u2

2 −
√
u(1− u)

]
du =

∫ 1
0

(
1
2 − u + u2

2 − u1/2 + u3/2
)
du =[

u
2 −

u2

2 + u3

6 −
2
3u

3/2 + 2
5u

5/2
]1

0
= 1

2 −
1
2 + 1

6 −
2
3 + 2

5 = −1
2 + 2

5 = − 1
16

4.
∫ 2

1

∫ ln r
0 e5 ln t ds dt =

∫ 2
1 [e5 ln t]ln t

0 dt =
∫ 2

1 (t ln t − ln t)dt =[
t2

2 ln t − t2

4 − t ln t + t
]2

1
= (2 ln 2− 1− 2 ln 2 + 2)− (−1

4 + 1) = 1
4
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Exercises

Exercise 6.

Each of the following exercises gives an integral over a region in a
Cartesian coordinate plane. Sketch the region and evaluate the integral.

1.

∫ 0

2

∫ −v
v

2 dp dv (the pv -plane)

2.

∫ π/3

π/3

∫ sec 1

0
3 cos t du dt (the tu− plane)

3.

∫ 3/2

0

∫ 4−2u

1

4− 2u

v2
dv du (the uv−plane)
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Solution for (1.) in Exercise 6

∫ 0

−2

∫ −v
v

2dp dv = 2

∫ 0

−2
[p]−vv dv

= 2

∫ 0

−2
−2v dv

= −2[v2]0−2 = 8
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Solution for (2.) in Exercise 6

∫ x/3

−x/3

∫ sec t

0
3 cos t du dt =

∫ x/3

−x/3
[(3 cos t)u]sec t

0

=

∫ x/3

−x/3
3 dt = 2π
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Solution for (3.) in Exercise 6

∫ 3/2

0

∫ 4−2u

1

4− 2u

v2
dv du =

∫ 3/2

0

[2u − 4

v

]4−2u

1
du

=

∫ 3/2

0
(3− 2u)du = [3u − u2]

3/2
0 =

9

2
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Reversing the Order of Integration

Exercise 7.

In the following exercises, sketch the region of integration and write an
equivalent double integral with the order of integration reversed.

1.

∫ 1

0

∫ 4−2x

2
dy dx

2.

∫ ln 2

0

∫ 2

ex
dx dy

3.

∫ 3/2

0

∫ 9−4x2

0
16x dy dx

4.

∫ e

1

∫ ln x

0
xy dy dx

5.

∫ √3

0

∫ tan−1 y

0

√
xy dx dy
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Solution for (1.) in Exercise 7

∫ 4

2

∫ (4−y)/2

0
dx dy
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Solution for (2.) in Exercise 7

∫ 2

1

∫ ln x

0
dy dx
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Solution for (3.) in Exercise 7

∫ 9

0

∫ 1
2

√
9−y

0
16x dx dy
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Solution for (4.) in Exercise 7

∫ 1

0

∫ e

ey
x y dx dy
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Solution for (5.) in Exercise 7

∫ π/3

0

∫ √3

tan x

√
xydy dx
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Exercises

Exercise 8.

In the following exercises, sketch the region of integration, reverse the
order of integration, and evaluate the integral.

1.

∫ π

0

∫ π

x

sin y

y
dy dx

2.

∫ 2

0

∫ 4−x2

0

xe2y

4− y
dy dx

3.

∫ 1/16

0

∫ 1/2

y1/4
cos
(
16πx5

)
dx dy

4.

∫ 8

0

∫ 2

3√x

1

y4 + 1
dy dx
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Solution for (1.) in Exercise 8

∫ π

0

∫ π

x

sin y

y
dy dx =

∫ π

0

∫ y

0

sin y

y
dx dy

=

∫ π

0
sin y dy = 2
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Solution for (2.) in Exercise 8

∫ 2

0

∫ 4−x2

0

xe2y

4− y
dy dx =

∫ 4

0

∫ √4−y

0

xe2y

4− y
dx dy

=

∫ 4

0

[ x2e2y

2(4− y)

]√4−y
0

dy

=

∫ 4

0

e2y

2
dy =

[e2y

4

]4
0

=
e8 − 1

4
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Solution for (3.) in Exercise 8

∫ 1/16

0

∫ 1/2

y4/4
cos(16πx5)dx dy =

∫ 1/2

0

∫ x4

0
cos(16πx5)dy dx

=

∫ 1/2

0
x4 cos(16πx5)dx

=
[sin(16πx5)

80π

]1/2

0
=

1

80π
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Solution for (4.) in Exercise 8

∫ 8

0

∫ 2

3√x

1

y4 + 1
dy dx =

∫ 2

0

∫ y3

0

1

y3 + 1
dx dy

=

∫ 2

0

y3

y4 + 1
dy

=
1

4

[
ln(y4 + 1)

]2
0

=
ln 17

4
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Exercises

Exercise 9.

In the following exercises, sketch the region of integration, reverse the
order of integration, and evaluate the integral.

1. Square region :

∫∫
R

(
y − 2x2

)
dA where R is the region bounded by

the square |x |+ |y | = 1

2. Triangular region :

∫∫
R
xy dA where R is the region bounded by the

lines y = x , y = 2x , and x + y = 2
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Solution for (1.) in Exercise 9

∫∫
R

(y − 2x2)dA =

∫ 0

−1

∫ x+1

−x−1
(y − 2x2)dy dx +

∫ 1

0

∫ 1−x

x−1
(y − 2x2)dy dx

=

∫ 0

−1

[1

2
y2 − 2x2y

]x+1

−x−1
dx +

∫ 1

0

[1

2
y2 − 2x2y

]1−x

x−1
dx

= −4

∫ 0

−1
(x3 + x2)dx + 4

∫ 1

0
(x3 − x2)dx

= −4
[ x4

4
+

x3

3

]
]0
−1 + 4

[ x4

4
−

x3

3

]1
0

= 4
[ (−1)4

4
+

(−1)3

3

]
+ 4

(
1

4
−

1

3

)
= 8

(
3

12
−

4

12

)
= −

8

12
= −

2

3
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Solution for (2.) in Exercise 9

∫∫
R
xy dA =

∫ 2/3

0

∫ 2x

x
xy dy dx +

∫ 1

2/3

∫ 2−x

x
xy dy dx

=

∫ 2/3

0

[1

2
xy2
]2x
x
dx +

∫ 1

2/3

[1

2
xy2
]2−x

x
dx

=

∫ 2/3

0
(2x3 −

1

2
x3)dx +

∫ 1

2/3

[1

2
x(2− x)2 −

1

2
x3
]
dx

=

∫ 2/3

0

3

2
x3dx +

∫ 1

2/3
(2x − x2)dx =

[3

8
x4
]2/3

0
+
[
x2 −

2

3
x3
]1

2/3

=
6

81
+

27

81
−
(

36

81
−

16

81

)
=

13

81
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Volume beneath a Surface z = f (x , y)

Exercise 10.

1. Find the volume of the region bounded above by the paraboloid
z = x2 + y2 and below by the triangle enclosed by the lines
y = x , x = 0, and x + y = 2 in the xy−plane.

2. Find the volume of the solid that is bounded above by the cylinder
z = x2 and below by the region enclosed by the parabola y = 2− x2

and the line y = x in the xy−plane.

3. Find the volume of the solid whose base is the region in the xy−plane
that is bounded by the parabola y = 4− x2 and the line y = 3x ,
while the top of the solid is bounded by the plane z = x + 4.
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Solution for (1.) in Exercise 10

V =

∫ 1

0

∫ 2−x

x
(x2 + y2)dy dx =

∫ 1

0

[
x2y +

y3

3
)
]2−x

x
dx

=

∫ 1

0

[
2x2 −

7x3

3
+

(2− x)3

3

]
dx

=
[2x3

3
−

7x4

12
−

(2− x)4

12

]1
0

=

(
2

3
−

7

12
−

1

12

)
−
(

0− 0−
16

12

)
=

4

3
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Solution for (2.) in Exercise 10

V =

∫ 1

−2

∫ 2−x2

x
x2dy dx =

∫ 1

−2
[x2y ]2−x2

x dx

=

∫ 1

−2
(2x2 − x4 − x3)dx =

[2

3
x3 −

1

5
x5 −

1

4
x4
]1
−2

=

(
2

3
−

1

5
−

1

4

)
−
(
−

16

3
+

32

5
−

16

4

)
=

(
40

60
−

12

60
−

15

60

)
−
(
−

320

60
+

384

60
−

340

60

)
=

63

20
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Solution for (3.) in Exercise 10

V =

∫ 1

−4

∫ 4−x2

3x
(x + 4)dy dx =

∫ 1

−4
[xy + 4y ]4−x2

3x dx

=

∫ 1

−4
[x(4− x2) + 4(4− x2)− 3x2 − 12x]dx

=

∫ 1

−4
(−x3 − 7x2 − 8x + 16x)dx

=
[
−

1

4
x4 −

7

3
x3 − 4x2 + 16x

]1
−4

=

(
−

1

4
−

7

3
+ 12

)
−
(

64

3
− 64

)
=

157

3
−

1

4
=

625

12

P. Sam Johnson Double Integrals over General Regions 71/93



Volume beneath a Surface z = f (x , y)

Exercise 11.

1. Find the volume of the solid in the first octant bounded by the
coordinate planes, the plane x = 3, and the parabolic cylinder
z = 4− y2.

2. Find the volume of the solid cut from the first octant by the surface
z = 4− x2 − y .

3. Find the volume of the solid cut from the square column |x |+ |y | ≤ 1
by the planes z = 0 and 3x + z = 3.

4. Find the volume of the solid bounded on the front and back by the
planes x = ±π/3, on the sides by the cylinders y = ± sec x , above by
the cylinder z = 1 + y2, and below by the xy−plane.
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Solution for the Exercise 11

1. V =

∫ 2

0

∫ 3

0
(4− y2)dx dy =

∫ 2

0
[4x − y2x]3

0dy =

∫ 2

0
(12− 3y2)dy = [12y − y3]2

0 =

24− 8 = 16

2. V =

∫ 2

0

∫ 4−x2

0
(4− x2 − y)dy dx =

∫ 2

0

[
(4− x2)y −

y2

2

]4−x2

0
dx =

∫ 2

0

1

2
(4− x2)2dx =∫ 2

0

(
8− 4x2 +

x4

2

)
dx =

[
8x−

4

3
x3 +

1

10
x5
]2

0
= 16−

32

3
+

32

10
=

480− 320 + 96

30
=

128

15

3. V =

∫ 0

−1

∫ x+1

−x−1
(3− 3x)dy dx +

∫ 1

0

∫ 1−x

x−1
(3− 3x)dy dx =

6

∫ 0

−1
(1− x2)dx + 6

∫ 1

0
(1− x)2dx = 4 + 2 = 6

4. V = 4

∫ x/3

0

∫ sec x

0
(1 + y2)dy dx = 4

∫ x/3

0

[
y +

y3

3

]sec x

0
dx =

4

∫ x/3

0

(
sec x +

sec3 x

3

)
dx =

2

3
[7 ln | sec x + tan x |+ sec x tan x]

π/3
0 =

2

3

[
7 ln

(
2 +
√

3
)

+ 2
√

3
]
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Exercises

Exercise 12.

In the following exercises, sketch the region of integration and the solid
whose volume is given by the double integral.

1.

∫ 3

0

∫ 2−2x/3

0

(
1− 1

3
x − 1

2
y

)
dy dx

2.

∫ 4

0

∫ √16−y2

−
√

16−y2

√
25− x2 − y2dx dy
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Solution for the Exercise 12

1.

2.
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Integrals over Unbounded Regions

Exercise 13.

Improper double integrals can often be computed similarly to improper
integrals of one variable. The first iteration of the following improper
integrals is conducted just as if they were proper integrals. One then
evaluates an improper integral of a single variable by taking appropriate
limits. Evaluate the following improper integrals as iterated integrals.

1.

∫ ∞
1

∫ 1

e−x

1

x3y
dy dx

2.

∫ ∞
−∞

∫ ∞
−∞

1

(x2 + 1) (y2 + 1)
dx dy

3.

∫ ∞
0

∫ ∞
0

xe(x+2y)dx dy
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Solution for the Exercise 13

1.

∫ ∞
1

∫ 1

e−x

1

x3y
dy dx =

∫ ∞
1

[ ln y

x3

]1
e−x dx =

∫ ∞
1
−
(
−x
x3

)
dx = − lim

b→∞

[ 1

x

]b
1

=

− lim
b→∞

(
1

b
− 1

)
= 1

2.

∫ ∞
−∞

∫ ∞
−∞

1

(x2 + 1)(y2 + 1)
dx dy = 2

∫ ∞
0

(
2

y2 + 1

)(
lim

b→∞
tan−1 b − tan−1 0

)
dy =

2π lim
b→∞

∫ b

0

1

y2 + 1
dy = 2π

(
lim

b→∞
tan−1 b − tan−1 0

)
= (2π)(

π

2
) = π2

3.

∫ ∞
0

∫ ∞
0

xe−(x+2y)dx dy =

∫ ∞
0

e−2y lim
b→∞

[−xe−x − e−x ]b0dy =∫ ∞
0

e−2y lim
b→∞

(−be−b − e−b + 1)dy =

∫ ∞
0

e−2ydy =
1

2
lim

b→∞
(−e−2b + 1) =

1

2
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Approximating Integrals with Finite Sums

In the following exercise, approximate the double integrals of f (x , y) over
the region R partitioned by the given vertical lines x = a and horizontal
lines y = c . In each subrectangle, use (xk , yk) as indicated for your

approximation.

∫∫
R
f (x , y) dA ≈

n∑
k=1

f (xk , yk) ∆Ak .

Exercise 14.

f (x , y) = x + y over the region R bounded above by the semicircle
y =
√

1− x2 and below by the x-axis, using the partition
x = −1,−1/2, 0, 1/4, 1/2, 1 and y = 0, 1/2, 1 with (xk , yk) the lower left
corner in the kth subrectangle (provided the subrectangle lies within R)
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Solution for the Exercise 14

∫∫
R
f (x , y)dA ≈ 1

4
f (−1

2
, 0) +

1

8
f (0, 0) +

1

8
f (

1

4
, 0)

=
1

4
(−1

2
) +

1

8
(0 +

1

4
)

= − 3

32
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Exercises

Exercise 15.

1. Circular sector : Integrate f (x , y) =
√

4− x2 over the smaller sector
cut from the disk x2 + y2 ≤ 4 by the rays θ = π/6 and θ = π/2.

2. Unbounded region : Integrate f (x , y) = 1/
[(
x2 − x

)
(y − 1)2/3

]
over the infinite rectangle 2 ≤ x <∞, 0 ≤ y ≤ 2.

3. Noncircular cylinder : A solid right (noncircular) cylinder has its base
R in the xy− plane and is bounded above by the paraboloid
z = x2 + y2. The cylinder’s volume is

V =

∫ 1

0

∫ y

0

(
x2 + y2

)
dx dy +

∫ 2

1

∫ 2−y

0

(
x2 + y2

)
dx dy .

Sketch the base region R and express the cylinder’s volume as a single
iterated integral with the order of integration reversed. Then evaluate the
integral to find the volume.
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Solution for (1.) in Exercise 15

The ray θ = π
6 meets the circle x2 + y2 = 4 at the point (

√
3, 1)⇒ the

ray is represented by the line y = x√
3
. Thus,

∫∫
R
f (x , y)dA =

∫ √3

0

∫ √4−x2

x/
√

3

√
4− x2dy dx

=

∫ √3

0

[
(4− x2)− x√

3

√
4− x2

]
dx

=
[
4x − x3

3
+

(4− x2)3/2

3
√

3

]√3

0

=
20
√

3

9
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Solution for (2.) in Exercise 15

∫ ∞
2

∫ 2

0

1

(x2 − x)(y − 1)2/3
dy dx =

∫ ∞
2

[3(y − 1)1/3

(x2 − x)

]2
0
dx

=

∫ ∞
2

(
3

x2 − x
+

3

x2 − x

)
dx

= 6

∫ ∞
2

dx

x(x − 1)

= 6 lim
b→∞

∫ b

2

(
1

x − 1
−

1

x

)
dx

= 6 lim
b→∞

[ln(x − 1)− ln x]b2

= 6 lim
b→∞

[ln (b − 1)− ln b − ln 1 + ln 2]

= 6
[

lim
b→∞

ln

(
1−

1

b

)
+ ln 2

]
= 6 ln 2
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Solution for (3.) in Exercise 15

V =

∫ 1

0

∫ 2−x

x
(x2 + y2)dy dx =

∫ 1

0
[x2y +

y3

3
]2−x
x dx

=

∫ 1

0

[
2x2 −

7x3

3
+

(2− x)3

3

]
dx

=
[2x3

3
−

7x4

12
−

(2− x)4

12

]1
0

=

(
2

3
−

7

12
−

1

12

)
− (0− 0−

16

12
)

=
4

3

P. Sam Johnson Double Integrals over General Regions 83/93



Exercises

Exercise 16.

1. Converting to a double integral : Evaluate the integral∫ 2

0

(
tan−1 πx − tan−1 x

)
dx . (Hint: Write the integrand as an

integral.)

2. Maximizing a double integral : What region R in the xy− plane

maximizes the value of

∫∫
R

(
4− x2 − 2y2

)
dA? Give reasons for your

answer.
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Solution for the Exercise 16

1. ∫ 2

0
(tan−1 π x − tan−1 x)dx =

∫ 2

0

∫ πx

x

1

1 + y2
dy dx

=

∫ 2

0

∫ y

y/x

1

1 + y2
dx dy +

∫ 2x

2

∫ 2

y/x

1

1 + y2
dx dy

=

∫ 2

0

1− 1
x
y

1 + y2
dy +

∫ 2x

2

(2− y
x

)

1 + y2
dy

=

(
π − 1

2π

)
[ln (1 + y2)]2

0 + [2 tan−1 y +
1

2π
ln(1 + y2)]2x

2

= 2 tan−1 2π − 2 tan−1 2−
1

2π
ln(1 + 4π2) +

ln 5

2

2. To maximize the integral, we want the domain to include all points where the integrand is
positive and to exclude all points where the integrand is negative. These criteria are met
by the points (x , y) such that 4− x2 − 2y2 ≥ or x2 + 2y2 ≤ 4, which is the ellipse
x2 + 2y2 = 4 together with its interior.
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Exercises

Exercise 17.

1. Minimizing a double integral : What region R in the xy−plane

minimizes the value of

∫∫
R

(
x2 + y2 − 9

)
dA? Give reasons for your

answer.

2. Is it possible to evaluate the integral of a continuous function f (x , y)
over a rectangular region in the xy− plane and get different answers
depending on the orer of integration? Give reasons for your answer.
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Solution for the Exercise 17

1. To minimize the integral, we want the domain to include all points
where the integrand is negative and to exclude all points where the
integrand is positive. These criteria are met by the points (x , y) such
that x2 + y2 − 9 ≤ 0 or x2 + y2 ≤ 9, which is the closed disk of
radius 3 centered at the origin.

2. No, it is not possible. By Fubini’s theorem, the two orders of
integration must give the same result.
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Exercise

Exercise 18.

How would evaluate the double integral of a continuous funtion f (x , y)
over the region R in the xy− plane enclosed by the triangle with vertices
(0, 1) , (2, 0) , and (1, 2)? Give reasons for your answer.
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Solution for the Exercise 18

One way would be to partition R into two triangles with the line y = 1.
The integral of f over R could then be written as a sum of integrals that
could be evaluated by integrating first with respect to x and then with
respect to y:∫∫

R
f (x , y)dA =

∫ 1

0

∫ 2−(y/2)

2−2y
f (x , y)dx dy +

∫ 2

1

∫ 2−(y/2)

y−1
f (x , y)dx dy .

Partitioning R with the line x = 1 would let us write the integral of f over
R as a sum of iterated integrals with order dy dx .
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Exercises

Exercise 19.

1. Unbounded region : Prove that

∫ ∞
−∞

∫ ∞
−∞

e−x
2−y2

dx dy =

lim
b→∞

∫ b

−b

∫ b

−b
e−x

2−y2
dx dy = 4

(∫ ∞
0

e−x
2
dx

)2

.

2. Improper double integral : Evaluate the improper integral∫ 3

0

∫ 3

0

x2

(y − 1)2/3
dy dx
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Solution for (1.) in Exercise 19

∫ b

−b

∫ b

−b
e−x2−y2

dx dy =

∫ b

−b

∫ b

−b
e−y2

e−x2
dx dy

=

∫ b

−b
e−y2

(

∫ b

−b
e−e2

dx)dy

= (

∫ b

−b
e−x2

dx)(

∫ b

−b
e−y2

dy)

= (

∫ b

−b
e−x2

dx)2

= (2

∫ b

0
e−x2

dx)2

= 4(

∫ b

0
e−x2

dx)2.

Taking limits as b →∞ gives the stated result.
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Solution for (2.) in Exercise 19

∫ 1

0

∫ 3

0

x2

(y − 1)2/3
dy dx =

∫ 3

0

∫ 1

0

x2

(y − 1)2/3
dx dy

=

∫ 3

0

1

(y − 1)2/3

[ x3

3

]1
0
dy

=
1

3

∫ 3

0

dy

(y − 1)2/3

=
1

3
lim
b→1

∫ b

0

dy

(y − 1)2/3
+

1

3
lim
b→1

∫ 3

b

dy

(y − 1)2/3

= lim
b→1

[(y − 1)1/3]b0 + lim
b→1

[(y − 1)1/3]3
b

=
[

lim
b→1

(b − 1)1/3 − (−1)1/3
]
−
[

lim
b→1

(b − 1)1/3 − (2)1/3
]

= (0 + 1)− (0− 3
√

2) = 1 +
3
√

2
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